深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。这个算法会尽可能深地搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。这种算法不会根据图的结构等信息调整执行策略。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如无权最长路径问题等等。

因发明“深度优先搜索算法”,约翰·霍普克洛夫特与罗伯特·塔扬在1986年共同获得计算机领域的最高奖:图灵奖。

演算方法

  • 1.首先将根节点放入stack中。
  • 2.从stack中取出第一个节点,并检验它是否为目标。
    • 如果找到目标,则结束搜寻并回传结果。
    • 否则将它某一个尚未检验过的直接子节点加入stack中。
  • 3.重复步骤2。
  • 4.如果不存在未检测过的直接子节点。
    • 将上一级节点加入stack中。
    • 重复步骤2。
  • 5.重复步骤4。
  • 6.若stack为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。

C++的实现

定义一个结构体来表达一个二叉树的节点的结构:

1
2
3
4
5
struct Node {
int self; // 数据
Node *left; // 左孩子
Node *right; // 右孩子
};

那么我们在搜索一个树的时候,从一个节点开始,能首先获取的是它的两个子节点。例如:

1
2
3
           A
B C
D E F G

A是第一个访问的,然后顺序是B和D、然后是E。然后再是C、F、G。那么我们怎么来保证这个顺序呢?

这里就应该用堆栈的结构,因为堆栈是一个后进先出(LIFO)的顺序。通过使用C++的STL,下面的程序能帮助理解:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
const int TREE_SIZE = 9;
std::stack<Node *> unvisited;
Node nodes[TREE_SIZE];
Node *current;

//初始化树
for (int i = 0; i < TREE_SIZE; i++) {
nodes[i].self = i;
int child = i * 2 + 1;
if (child < TREE_SIZE) // Left child
nodes[i].left = &nodes[child];
else
nodes[i].left = NULL;
child++;
if (child < TREE_SIZE) // Right child
nodes[i].right = &nodes[child];
else
nodes[i].right = NULL;
}

unvisited.push(&nodes[0]); //先把0放入UNVISITED stack

// 树的深度优先搜索在二叉树的特例下,就是二叉树的先序遍历操作(这里是使用循环实现)
// 只有UNVISITED不空
while (!unvisited.empty()) {
current = (unvisited.top()); //当前访问的
unvisited.pop();
if (current->right != NULL)
unvisited.push(current->right );
if (current->left != NULL)
unvisited.push(current->left);
cout << current->self << endl;
}

原文地址:
https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E4%BC%98%E5%85%88%E6%90%9C%E7%B4%A2

知识共享 署名-相同方式共享 3.0协议之条款下提供